top of page

Prof. Dr. Xiao-Jun Yang

​​

Homepage
 
 
Update time: May. 5, 2018

Professor of Applied Mathematics and Mechnics

 

State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Email: dyangxiaojun@163.com

           dyangxiaojun@hotmail.com

           xjyang@cumt.edu.cn

         

Tel: +086-021-67867615

Fax: +086-021-67867615

ORCID: 0000-0003-0009-4599

Webpage:

https://www.scopus.com/authid/detail.uri?authorId=37006104500

Chinese homepage:

http://gdue.cumt.edu.cn/cb/46/c2237a445254/page.htm

Educations and work experience 

  • BSc. Degree, College of Mechanical Engineering, Heilongjiang University of Science and Technology, China

  • MSc. Degree, College of Science, China University of Mining and Technology, China

  • Ph.D. Degree, School of Mechanics and Civil Engineering, China University of Mining and Technology, China

  • Professor of Applied Mathematics and Mechnics, State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

My research interests

Viscoelasticity, analytical, approximate, numerical and exact solutions for ODEs and PDEs, integral transforms and their applications, nonlinear dynamics, continuous mechanics, rock mechanics, fluid mechanics, heat transfer, and traffic flow, wavelet, signal processing, biomathematics, mathematical physics, general calculus and applications, fractional calculus and applications, local fractional calculus and applications, general fractional calculus and applications, and variable order fractional calculus and applications.

Book Referee and Award

Outstanding reviewer Award

·         Applied Mathematical Modelling

·         Chaos, Solitons and Fractals

·         Communications in Nonlinear Science and Numerical Simulation

          Computers & Mathematics with Applications

          Mathematical Methods in the Applied Sciences

Book Referee 

·         World Scientific Publisher, Singapore (2015)

·         Elsevier Science Publisher, The Netherlands (2014-2015)

·         CRC Press/ Taylor and Francis Group (2017)

           Springer Nature (2017)

Awards

          2017 Most Cited Chinese Researchers in Mathematics (Place No. 1), Elsevier

·         2017 Chinese 100 Best International Impact Academic Paper 

·         2017 China University of Mining and Technology Excellent Innovation Award

·         2009 China University of Mining and Technology Excellent Master Degree Award

·         2004 Heilongjiang Zhou Peiyuan Mechanics Competition Award

Member of editorial boards

 

  • Fractals

  • PLOS ONE

  • Mathematical Modelling and Analysis

 

 

 

 

 

 

Conferences 

 

International Conference on Fractional Differentiation and its Applications 16-18 July 2018, Amman, The Hashemite Kingdom of Jordan (International Program Committee Member)

International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’17 held at SPbPU, Saint Petersburg-Russia, during July 24-28, 2017  (Committee Member)

Symposium on Advanced Computational Methods for Linear and Nonlinear Heat and Fluid Flow 2017 & Advanced Computational Methods in Applied Science 2017 & Fractional (Fractal) Calculus and Applied Analysis 2017, July1-3, 2017, Songjiang, Shanghai, China [Chairman]

International Conference on Heat and Fluid Flow 2016, Songjiang, Shanghai, China [Chairman]

Editorial Activity: Special Issues

Referee for  ISI Journals in Mathematics 

  • Acta Mathematicae Applicatae Sinica 

  • Advances in Difference Equations

  • Advances in Nonlinear Analysis

  • Applicable Analysis

  • Applied and Computational Mathematics

  • Applied Mathematics and Computation

  • Applied Mathematics Letters

  • Applied Mathematics & Information Sciences

  • Applied Mathematical Modelling

  • Boundary Value Problems

  • Bulletin of the Iranian Mathematical Society

  • Communications in Nonlinear Science and Numerical Simulation

  • Computational and Applied Mathematics(COAM)(Springer)

  • Computers & Mathematics with Applications

  • Discrete and Continuous Dynamical Systems Series S

  • Fundamenta Informaticae

  • Fractals

  • Journal of Computational and Applied Mathematics

  • Journal of Differential Equations

  • Journal of Inequalities and Applications

  • Journal of Nonlinear Science

  • Journal of Nonlinear Science and Applications

  • Journal of Applied Mathematics

  • Journal of Applied Mathematics and Computational Mechanics

  • Journal of Nonlinear Functional Analysis

  • Journal of Algorithms and Computational Technology

  • Journal of Applied Mathematics and Computing

  • International Journal of Biomathematics

  • International Journal of Nonlinear Sciences and Numerical Simulation

  • Lithuanian Mathematical Journal

  • Miskolc Mathematical Notes

  • Mathematics and Computers in Simulation

  • Mathematical Methods in the Applied Sciences

  • Mathematical Problems in Engineering

  • Nonlinear Differential Equations and Applications

  • RACSAM - Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas

  • Open Mathematics

  • Proceedings of the American Mathematical Society

Referee for  ISI Journals in Mathematical Physics, Mechanics and Signal Analysis

  • Acta Mechanica

  • AIP Advances

  • ASME Journal of Applied Mechanics

  • Advances in High Energy Physics

  • Advances in Mechanical Engineering

  • Analysis and Mathematical Physics

  • Arabian Journal of Geosciences

  • European Journal of Computational Mechanics

  • Brazilian Journal of Physics

  • Chaos

  • Chaos, Solitons & Fractals

  • Chemical Engineering Science

  • Chinese Journal of Physics

  • Communications in Theoretical Physics EPJ Nonlinear Biomedical Physics

  • Complexity

  • Composites Part B

  • Communications in Theoretical Physics

  • Circuits, Systems & Signal Processing

  • Canadian Journal of Physics

  • Discrete Dynamics in Nature and Society

  • Engineering Computations

  • Entropy

  • Few-Body Systems

  • Journal of Applied Fluid Mechanics

  • Journal of Experimental & Theoretical Artificial Intelligence

  • Journal of Geophysics and Engineering

  • Journal of Hydrology and Hydromechanics

  • Journal of Low Frequency Noise, Vibration & Active Control

  • Journal of Mathematical Physics

  • Journal of the Franklin Institute

  • Journal of Vibration and Control

  • Journal of Vibroengineering

  • Journal of Porous Media

  • Journal of Molecular Liquids

  • Journal of the Brazilian Society of Mechanical Sciences and Engineering

  • IEEE Access

  • IEEE Transactions on Industrial Informatics

  • Indian Journal of Physics

  • International Journal of Electronics and Communications

  • International Journal of Heat and Mass Transfer

  • International Journal of Imaging Systems and Technology

  • International Journal of Modern Physics B

  • International Journal of Modern Physics C

  • International Journal of Numerical Methods for Heat and Fluid Flow

  • International Journal of Systems Science

  • International Journal of Theoretical Physics

  • Ionics

  • ISA Transactions

  • Maejo International Journal of Science and Technology

  • Mechatronics

  • Modern Physics Letters A

  • Modern Physics Letters B

  • Modern Physics Letters C

  • Neural Computing and Applications

  • Nonlinear Dynamics

  • Ocean Engineering

  • Open Physics

  • Optical and Quantum Electronics

  • Optik - International Journal for Light and Electron Optics

  • Physica A

  • PLOS one

  • Pramana-Journal of Physics

  • Scientia Iranica

  • Signal Processing

  • Simulation: Transactions of the Society for Modeling and Simulation

  • Superlattices and Microstructures

  • Springer Plus

  • Superlattices and Microstructures 

  • The European Physical Journal Plus

  • The European Physical Journal B

  • The European Physical Journal Special Topics

  • Theoretical and Applied Mechanics Letters

  • Thermal Science

  • Textile Research Journal

  • Zeitschrift für Naturforschung A

Published book chapters

  1.  M. K. Liao, X. J. Yang, Q. Yan, A new viewpoint to Fourier analysis in fractal space, G. A. Anastassiou, O. Duman (Eds), Advances in Applied Mathematics and Approximation Theory, Chapter 26, pp 397-409, Springer, New York, 2013.

  2. X.-J. Yang, C. Cattani, G. N. Xie, Local fractional calculus application to differential equations arising in fractal heat transfer, C. Cattani, H. M. Srivastava, X.-J. Yang, Fractional Dynamics, De Gruyter Open, 2015. 

  3. X.-J. Yang, D. Baleanu, J. A. Tenreiro Machado, Numerical solutions for ODEs with local fractional derivative, C. Cattani, H. M. Srivastava, X.-J. Yang, Fractional Dynamics, De Gruyter Open, 2015.

  4. X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, Application of the local fractional Fourier series to fractal signals, J. A. Tenreiro Machado, D. Baleanu,  Luo, Albert C. J. , Discontinuity and Complexity in Nonlinear Physical Systems, Springer, New York, 2014.

  5. X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, On analytical methods for differential equations with local fractional derivative operators, M. Xavier, A. Z. D. Roy, Fractional Calculus: Theory, Nova Science Publishers, NY, 2014.

  6.  H. M. Srivastava, J. A. Tenreiro Machado, Xiao-Jun Yang, Approximate methods for local fractional differential equations, C. Cattani, H. M. Srivastava, X.-J. Yang, Fractional Dynamics, De Gruyter Open, 2015.

  7. M. R. S. Rahmat, D. Baleanu, X.-J. Yang, Cantor-type spherical-coordinate method for differential equations within local fractional derivatives, C. Cattani, H. M. Srivastava, X.-J. Yang, Fractional Dynamics, De Gruyter Open, 2015.

Books

  1. ​X.-J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher Limited, HongKong, 2011. (ISBN 978-988-19132-1-0).

  2. X. -J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, 2012 (ISBN 978-1-938576-01-0). 

  3. X. -J. Yang, D. Baleanu, H. M. Srivastava, Local Fractional Integral Transforms and Their Applications, Elsevier, 2015 (ISBN 978-0-12-804002-7).

  4. Carlo Cattani, H. M. Srivastava, X.-J. Yang (eds), Fractional Dynamics, De Gruyter Open, 2015 (ISBN 978-3-11-029316-6). 

  5. H. M. Srivastava, R. K. Raina, X.-J. Yang, Special Functions in Fractional Calculus and Related Fractional Differintegral Equations, World Scientific, Singapore, 2015

Published books

 

  1. Authors

     Xiao-Jun Yang, Dumitru Baleanu, H. M. Srivastava

    Information

  2. Publisher: Academic Press; 1 edition (October 29, 2015)

  3. Language: English

  4. ISBN-10:  0128040025

  5. ISBN-13: 978-0128040027

  6. Hardcover: 262 pages

  7. Product Dimensions: 6 x 0.6 x 9 inches

  8. Shipping Weight: 1.7 pounds

 

  1. Author

    Xiao-Jun Yang

    Information

  2. Publisher: World Science Publisher (July 30, 2012)

  3. Language: English

  4. ISBN-10: 1938576012

  5. ISBN-13: 978-1-938576-01-0

  6. Paperback: 273 pages

  7. Product Dimensions: 6 x 0.4 x 9 inches

Advanced Local Fractional Calculus and Its Applications

 

 

  1. Author

    Xiao-Jun Yang

    Information

  2. Publisher: Asian Academic Publisher (July 25, 2011)

  3. Language: English

  4. ISBN-10: 9881913217

  5. ISBN-13: 978-988-19132-1-0

  6. Paperback: 238 pages

  7. Product Dimensions: 6 x 0.4 x 9 inches

Local Fractional Functional Analysis & Its Applications
Fractional Dynamics

 

 

  1. Editors

    Carlo Canttina, H. M. Srivastava, Xiao-Jun Yang

    Information

  2. Publisher: De Gruyter Open (Dec, 2015)

  3. Language: English

  4. ISBN-13: 978-3-11-029316-6

  5. Paperback: 408 pages

  6. Product Dimensions: 6 x 0.4 x 9 inches

Fractional DynamicsSpecial Functions in Fractional Calculus and Related Fractional Differintegral Equations

 

 

  1. Editors

    H. M. Srivastava, R. K. Raina, Xiao-Jun Yang

    Information

  2. Publisher: World Scientific, Singapore  (June, 2016)

  3. Language: English

  4. ISBN: Unknown

  5. Paperback: 300 pages

  6. Product Dimensions: 6 x 0.4 x 9 inches

Updating
List of publications

  • List of publications

  • 2017

  • Accepted Papers

  • Yang, X. J., Gao, F., Machado, J. A., Baleanu, D. (2017). A new fractional derivative involving the normalized sinc function without singular kernel. The European Physical Journal Special Topics, Accepted.(SCI)

  • Mohyud-Din, S. T., Khan, S. I., Khan, U., Ahmed, N., & Xiao-Jun, Y. (2017). Squeezing Flow of MHD Fluid between Parallel Disks. International Journal for Computational Methods in Engineering Science and Mechanics, (just-accepted)

  • Yang, X. J.,  New rheological problems involving general fractional derivatives within nonsingular power-law kernel, Proceedings of the Romanian academy, Series A, in press.(SCI)

  • Z. Rahimi, G. Rezazadeh, W. Sumelka, Yang X.-J., A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear nonlocal theory, Archives of Mechanics, In press.(SCI)

  • Yang, X. J., Gao, F., Srivastava, H. M. (2017). A new computational approach for solving nonlinear local fractional PDEs. Journal of Computational and Applied Mathematics. DOI: DOI: 10.1016/j.cam.2017.10.007.(SCI)

  • Gao, F., Yang, X. J. H. M. Srivastava, Exact traveling-wave solutions for linear and nonlinear heat-transfer equations, Thermal Science, 21(6), DOI: 10.2298/TSCI161013321G (SCI)

  • Liang, X., Gao, F., Su, S. J., Wang, Z., Yang, X. J. (2017). Classifications and duality relations for several integral transforms. Journal of Nonlinear Sciences & Applications, In press (二区).

2017 

  • Rahimi, Z., Sumelka, W., Yang, X. J. (2017). A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams. The European Physical Journal Plus, 132(11), 479. (SCI)

  • Yang, X. J., Machado, J. T., Cattani, C., Gao, F. (2017). On a fractal LC-electric circuit modeled by local fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 47, 200-206. (SCI)(ESI Highly Cited Paper) 

  • Yang, X. J., Gao, F., Srivastava, H. M., Non-differentiable exact solutions for the nonlinear ODEs defined on fractal sets. Fractals, 2017, 25(4), 1740002 (9 pages). (SCI)

  • Yang, X. J. (2017). A new integral transform operator for solving the heat-diffusion problem. Applied Mathematics Letters, 64, 193-197.(SCI) (ESI Highly Cited Paper)

  • Yang, X. J., Gao, F., Srivastava, H. M., (2017). Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations, Computers and Mathematics with Applications, 73, 203–210.(SCI) (ESI Highly Cited Paper, Hot Paper)

  • Yang, X. J., Machado, J. T., Baleanu, D. On exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals, 2017, 25(4), 1740006 (7 pages). (SCI) (ESI Highly Cited Paper, Hot Paper)

  • Yang, X. J., & Machado, J. T. (2017). A new fractional operator of variable order: application in the description of anomalous diffusion. Physica A: Statistical Mechanics and its Applications, 481, 276-283.(SCI)

  • Yang, X. J., F. Gao, H. M. Srivastava, New rheological models within local fractional derivative, Romanian Reports in Physics, 69(3), 113 (2017).  (SCI)

  • Yang, X. J., Machado, J. T., Baleanu, D. Anomalous diffusion models with general fractional derivatives within the kernels of the extended Mittag-Leffler type functions, Romanian Reports in Physics, 2017, 2017, 69(4): 115(19pages).(SCI)

  • Yang, X. J., New general fractional-order rheological models with kernels of Mittag-Leffler functions, Romanian Reports in Physics, 2017, 69(4): 118(15 pages).(SCI)

  • Yang, X. J., Baleanu, D., Gao, F. (2017). New analytical solutions for Klein-Gordon and Helmholtz equations in fractal dimensional space. Proceedings of the Romanian academy, Series A, 18(3), 231-238.(SCI)

  • Yang, X. J., Tenreiro Machado, J. A. (2017). A new insight into complexity from the local fractional calculus view point: modelling growths of populations. Mathematical Methods in the Applied Sciences.40(17):6070–6075. (SCI)

  • Yang, X. J., Machado, J. T., Nieto, J. J., A New Family of the Local Fractional PDEs, Fundamenta Informaticae, 151 (2017) 63–75.(SCI)

  • Yang, X. J., Srivastava, H. M., Torres, D. F., Zhang, Y. , Non-differentiable Solutions for Local Fractional Nonlinear Riccati Differential Equations, Fundamenta Informaticae, 151 (2017) 409–417.(SCI)

  • Yang, X. J., Gao, F., A New Technology for Solving Diffusion and Heat Equations, Thermal Science, 2017, 21(1A), 133-140. (SCI) (ESI Highly Cited Paper)

  • Yang, X. J. (2017). Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. Thermal Science, 21 (3), 1161-1171.(SCI) (ESI Highly Cited Paper)

  • Yang, X. J., New integral transforms for solving a steady heat transfer problem, Thermal Science, 21(1), S79-S87.(SCI)

  • Yang, X. J., Y. G. Yang, C. Cattani, M. Z. Zhu, A new technique for solving the 1-D Burgers equation, Thermal Science,21(1), S129-S136. (SCI)

  • Yang, X. J., H. M. Srivastava, D.F. M. Torres, Amar Debbouche, General fractional-order anomalous diffusion with nonsingular power-law kernel, Thermal Science, 21(1), S1-S9. (SCI)

  • Yang Xiao-Jun, General fractional calculus operators containing the generalized Mittag-Leffler functions applied to anomalous relaxation, Thermal Science, 21(1), S317-S326.(SCI)

  • Feng Gao, Yang, X. J.* and Syed Tauseef Mohyud-Din, On linear viscoelasticity within general fractional derivatives without singular kernel, Thermal Science, 21(1), S335-S342.(SCI)

  • Xin Liang, Feng Gao, Ya-Nan Gao, Yang, X. J., Applications of a novel integral transform to partial differential equations, Journal of Nonlinear Sciences & Applications, 10 (2017), 528–534.

  • K.M. Saad, E.H. AL-Shareef, Mohamed S. Mohamed, Yang, X. J., Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, The European Physical Journal Plus, (2017) 132: 23. (SCI)

  • X. H., Zhao, Y. D. Zhang, D.Zhao, Yang, X. J., The RC Circuit Described by Local Fractional Differential Equations, Fundamenta Informaticae, 150 (2017) 1–11. (SCI)

  • Y.-D. Zhang, X.-J. Yang, C. Cattani, Z.-C. Dong, T.F. Yuan, L.X. Han, Theory and Applications of Fractional Fourier Transform and its Variants:Preface, Fundamenta Informaticae, 151(1-4), pp. ix-xvi, 2017. (SCI)

  • D. Zhao, J. Singh, D. Kumar, S. Rathore, X.-J. Yang, An efficient computational technique for local fractional heat conduction equations in fractal media, Journal of Nonlinear Science and Applications, 10 (2017), 1478–1486. (SCI)

  • S. T. Mohyud-din, M. A. Iqbal, U. Khan, X. J. Yang, MHD squeezing flow between two parallel disks with suction or injection via legendre wavelet-quasilinearization technique, Engineering Computations, 34(3) (2017) , 892 - 901. (SCI)

  • Gao, F., Yang, X. J. *and Y. F. Zhang, (2017). Exact traveling wave solutions for a new nonlinear heat-transfer equation, Thermal Science, 21(4), 1833-1838. (SCI)

  • Rahimi, Z., Sumelka, W., Yang, X. J. (2017). Linear and non-linear free vibration of nano beams based on a new fractional non-local theory. Engineering Computations, 34(5), 1754-1770. (SCI)

  • Guo, Y. M., Zhao, Y., Zhou, Y. M., Xiao, Z. B., Yang, X. J. (2017). On the local fractional LWR model in fractal traffic flows in the entropy condition. Mathematical Methods in the Applied Sciences. 40(17):6127–6132. (SCI)

  • Shang, X. J., Wang J. G., andYang, X. J. Fractal analysis for heat extraction in geothermal system, Thermal Science, 21(1), S25-S31.(SCI)

  • Yuejin ZHO, Shun PANG, Guo CHONG, Xiaojun YANG, Xiaoding XU, Xiaotong LI, A variational iteration method integral transform technique for handling heat transfer problems, Thermal Science,21(1), S55-S61.(SCI)

  • Gao, Y. N., Yan, W. C., Yang, X. J., Crack closure and initiation stresses of coal subjected to thermo-gas-mechanical coupling, Thermal Science,21(1), S301-S308.(SCI)

  • T. L.Wang, G.T. Wang, X.-J. Yang, On a Hadamard-type fractional turbulent flow modelwith deviating arguments in a porous medium, Nonlinear Analysis: Modelling and Control, Vol. 22(6), 765–784(2017). (SCI)

  • Yang, X. J., Gasimov, Y. S., Gao, F., & Allahverdiyeva, N. (2017, January). Travelling-wave solutions for klein-gordon and helmholtz equations on cantor sets. Proceedings of the institute of mathematics and mechanics, 43, No. 1, pp. 123-131.

  • Yang, X. J. , General fractional derivatives: A tutorial comment, Symposiumon Advanced Computational Methods for Linear and Nonlinear Heat and Fluid Flow 2017 & Advanced Computational Methods in Applied Science 2017 & Fractional (Fractal) Calculus and Applied Analysis 2017, July1-3, 2017, Songjiang, Shanghai, China.

  •  

2016

  • Zhang, Y. & Yang, X. J. (2016). An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics. Applied Mathematical Modelling 40, 1793-1799. (SCI) (ESI Highly Cited Paper) 

  • Yang, X. J., Machado, J. A. T. & Srivastava, H. M. (2016). A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach. Applied Mathematics and Computation 274, 143-151.(SCI) (ESI Highly Cited Paper) 

  • Yang, X. J., Machado, J. A. T. &Hristov, J. (2016). Nonlinear dynamics for local fractional Burgers' equation arising in fractal flow. Nonlinear Dynamics 84, 3-7.(SCI) (ESI Highly Cited Paper) 

  • Yang, X. J., Machado, J. A. T., Baleanu, D. &Cattani, C. (2016). On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos 26.(SCI)

  • Yang, X. J., Tenreiro Machado, J. A., Baleanu, D.,Gao, F. (2016) A new numerical technique for local fractional diffusion equation in fractal heat transfer. Jounal of Nonlinear Science and Applications, 9,5621-5628. (SCI)

  • Yang, X. J. (2016). A NEW INTEGRAL TRANSFORM METHOD FOR SOLVING STEADY HEAT-TRANSFER PROBLEM. Thermal Science 20, S639-S642.(SCI)

  • Yang, X. J. (2016). A NEW INTEGRAL TRANSFORM WITH AN APPLICATION IN HEAT-TRANSFER PROBLEM. Thermal Science 20, S677-S681.(SCI)

  • Yang, X. J., Cattani, C. &Debbouche, A. (2016). The recent heat flow in different operators. Thermal Science 20.(SCI)

  • Yang, X. J., Lopes, A. M., Hristov, J. Y., Cattani, C., Baleanu, D. &Mohyud-Din, S. T. (2016). Special issue on advances in fractional dynamics in mechanical engineering. Advances in Mechanical Engineering 8. 1-2 (SCI)

  • Yang, X. J., Srivastava, H. M. & Machado, J. A. T. (2016). A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow. Thermal Science 20, 753-756.(SCI) (ESI Highly Cited Paper) 

  • Yang, X. J., Zhang, Z. Z., Machado, J. A. T. &Baleanu, D. (2016). ON LOCAL FRACTIONAL OPERATORS VIEW OF COMPUTATIONAL COMPLEXITY Diffusion and Relaxation Defined on Cantor Sets. Thermal Science 20, S755-S767.(SCI)

  • Yang, X. J., Zhang, Z. Z. & Srivastava, H. M. (2016). SOME NEW APPLICATIONS FOR HEAT AND FLUID FLOWS VIA FRACTIONAL DERIVATIVES WITHOUT SINGULAR KERNEL. Thermal Science 20, S833-S839.(SCI)

  • Gao, F. & Yang, X. J. (2016). FRACTIONAL MAXWELL FLUID WITH FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL. Thermal Science 20, S871-S877.(SCI)

  • Gao, F. & Yang, X. J. (2016). LOCAL FRACTIONAL EULER'S METHOD FOR THE STEADY HEAT-CONDUCTION PROBLEM. Thermal Science 20, S735-S738.(SCI)

  • Zhang, Y., Kumar, A. , Baleanu, D., Yang, X. J. (2016) Residual power series method for time-fractional Schrödinger equations. Journal of Nonlinear Science and Applications, 9, 5821-5829.(SCI)

  • Ma, M., Baleanu, D., Gasimov, Y. S. & Yang, X. J. (2016). NEW RESULTS FOR MULTIDIMENSIONAL DIFFUSION EQUATIONS IN FRACTAL DIMENSIONAL SPACE. Romanian Journal of Physics 61, 784-794. (SCI)

  • Gao, G. P., Cattani, C. & Yang, X. J. (2016). ABOUT LOCAL FRACTIONAL THREE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN CANTOR-TYPE CYLINDRICAL CO-ORDINATE SYSTEM. Thermal Science 20, S847-S851.(SCI)

  • Khan, S. I., Mohyud-Din, S. T. & Yang, X. J. (2016). Squeezing Flow of Micropolar Nanofluid between Parallel Disks. Journal of Magnetics 21, 476-489.(SCI)

  • Wu, F. & Yang, X. J. (2016). APPROXIMATE SOLUTION OF THE NON-LINEAR DIFFUSION EQUATION OF MULTIPLE ORDERS. Thermal Science 20, S683-S687.(SCI)

  • Wu, Z. H., Debbouche, A., Guirao, J. L. G. & Yang, X. J. (2016). ON LOCAL FRACTIONAL VOLTERRA INTEGRAL EQUATIONS IN FRACTAL HEAT TRANSFER. Thermal Science 20, S795-S800.(SCI)

  • Yan, S. P., Zhong, W. P. & Yang, X. J. (2016). A NOVEL SERIES METHOD FOR FRACTIONAL DIFFUSION EQUATION WITHIN CAPUTO FRACTIONAL DERIVATIVE. Thermal Science 20, S695-S699.(SCI)

  • Yang, A. M., Han, Y., Mang, Y. Z., Wang, L. T., Zhang, D. & Yang, X. J. (2016). ON LOCAL FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS IN FRACTAL STEADY HEAT TRANSFER. Thermal Science 20, S789-S793.(SCI)

  • Yang, C. Y., Zhang, Y. D. & Yang, X. J. (2016). EXACT SOLUTIONS FOR THE DIFFERENTIAL EQUATIONS IN FRACTAL HEAT TRANSFER. Thermal Science 20, S747-S750.(SCI)

  • Zhang, Y., Baleanu, D. & Yang, X. J. (2016). NEW SOLUTIONS OF THE TRANSPORT EQUATIONS IN POROUS MEDIA WITHIN LOCAL FRACTIONAL DERIVATIVE. Proceedings of the Romanian Academy Series a-Mathematics Physics Technical Sciences Information Science 17, 230-236.(SCI)

  • Zhao, Y., Cai, Y. G. & Yang, X. J. (2016). A LOCAL FRACTIONAL DERIVATIVE WITH APPLICATIONS TO FRACTAL RELAXATION AND DIFFUSION PHENOMENA. Thermal Science 20, S723-S727.(SCI)

  • Gao, F., Srivastavac, H. M., Gao, Y. N., Yang, X. J. , (2016) A coupling method involving the Sumudu transform and the variational iteration method for a class of local fractional diffusion equations. Journal of Nonlinear Science and Applications, 9, 5830-5835. (SCI)

  • Zhang, Y. F., Yang, X. J. (2016) Generation of discrete integrable systems and some algebro-geometric properties of related discrete-lattice equations. Journal of Nonlinear Science and Applications, 9, 6126-6141.(SCI) 

  • Li, C., Kumarb, A., Kumar, S., & Yang, X. J. (2016). On the approximate solution of nonlinear time-fractional KdV equation via modified homotopy analysis Laplace transform method. Journal of Nonlinear Sciences & Applications, 9(9) 5463-5470. (SCI)

  • Wang, S. H., Yang, X. J., Du, S. D., Li, N., Cattani, C., Dong, Z. C., & Zhang, Y. D. (2016). 3D Ceramics Printing Applied in Synthetic Bone Grafting Helps Seniors Suffering from Osteoporosis. JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, Vol. 64, pp. S365-S365. (SCI)

2015

  • D., Zhao., Yang, X.-J., H. M. Srivastava, Some fractal heat-transfer problems with local fractional calculus, Thermal Science, 19 (2015) 1867-1871. (SCI)

  • Y.-D. Zhang, S. -H. Wang, X.-J. Yang, Z.-C. Dong, G. Liu, P. Phillips, T.-F. Yuan, Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine, Springer Plus, 4 (2015) 716. (SCI)

  • X.-J. Yang, H. M. Srivastava, D. Baleanu, Initial-boundary value problems for local fractional Laplace equation arising in fractal electrostatics, Journal of Applied Nonlinear Dynamics, 4 (2015) 349-356. 

  • J. Ahmad, S. T. Mohyud-Din, H. M. Srivastava , X.-J. Yang, Analytic solutions of the Helmholtz and Laplace equations by using local fractional derivative operators, Waves, Wavelets and Fractals: Advanced Analysis, 1 (2015) 22-26.

  • S.-H Wang, X.-J. Yang, Y-D Zhang, P. Phillips, J-FYang, T-FYuan,  Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine, Entropy, 17 (2015) 6663-6682. (SCI)

  • X.-J. Yang, H. M. Srivastava, C. Cattina, Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Romanian Reports in Physics, 67 (2015) 752–761. (SCI)  

  • Y. Zhang, X.-J. Yang, C. Cattina, Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17 (2015) 6753-6764. (SCI)

  • D. Baleanu, X.-J. Yang, G. N. Xie, On the 60th Anniversary of Professor Jordan Yankov Hristov, Thermal Science, 19 (2015) SXI-SXII. (SCI)

  • D. Baleanu, X.-J. Yang, G. N. Xie, Special Issue on the Occasion of 60th Anniversary of Professor Jordan Yankov Hristov dedicated to non-linear diffusion models in heat and mass transfer, Thermal Science, 19 (2015) SIX-SX. (SCI)

  • X.- J. Yang, H. M. Srivastava, An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Communications in Nonlinear Science and Numerical Simulation, 29 (2015) 499-504. (SCI)   

  • K. Golmankhaneh, X.- J. Yang, D. Baleanu, Einstein field equations within local fractional calculus, Romanian Journal of Physics, 60 (2015) 22-31. (SCI)  

  • X.-J. Yang, D. Baleanu, M. C. Baleanu, Observing diffusion problems defined on cantor sets in different coordinate systems, Thermal Science, 19 (2015) 151-156. (SCI) 

  • X.-J. Yang, D. Baleanu, H. M. Srivastava, Local fractional similarity solution for the diffusion equation defined on Cantor sets, Applied Mathematics Letters, 47 (2015) 54-60. (SCI)

  • X.-J. Yang, D. Baleanu, P. Lazarević Mihailo, S. Cajić Milan, Fractal boundary value problems for integral and differential equations with local fractional operators, Thermal Science, 19 (2015) 959-966. (SCI)  

  • D. Baleanu, H. M. Srivastava, X.-J. Yang, Local fractional variational iteration algorithms for the parabolic Fokker-Planck equation defined on Cantor sets, Progress in Fractional Differentiation and Applications, 1 (2015) 1-11. (SCI)

  • Z. P. Fan, H. K. Jassim, R. K. Raina, X.-J. Yang, Adomian decomposition method for three-dimensional diffusion model in fractal heat transfer involving local fractional derivatives, Thermal Science, 19 (2015) 137-141. (SCI)  

  • H. M. Srivastava, X.-J. Yang, D. Baleanu, J. J. Nieto, J. Hristov, Advances on Integrodifferential Equations and Transforms, Abstract and Applied Analysis, 2015 (2015) 1-2. (Scopus)

2014

  • X.-J. Yang, D. Baleanu, Y. Khan, S.T. Mohyud-Din, Local fractional variational iteration method for diffusion and wave equations on Cantor sets, Romanian Journal of Physics, 59 (2014) 36-48. (SCI)

  • A.M. Yang, C. Cattani, C. Zhang, G.-N. Xie, and X. J. Yang,  Local fractional Fourier series solutions for nonhomogeneous heat equations arising in fractal heat flow with local fractional derivative, Advances in Mechanical Engineering, 2014 (2014) 1-5. (SCI)

  • L. Chen, Y. Zhao, H. Jafari, J. A. T. Machado, and X. J. Yang, Local fractional variational iteration method for local fractional Poisson equations in two independent variables, Abstract and Applied Analysis, 2014 (2014) 1-7. (SCI)

  • X. J. Yang, J. Hristov, H. M. Srivastava, and B. Ahmad, Modelling fractal waves on shallow water surfaces via local fractional Korteweg-de Vries equation, Abstract and Applied Analysis, 2014 (2014) 1-10. (SCI)

  • X. J. Wang, Y., Zhao, C. Cattani, X. -J. Yang, Local fractional variational iteration method for inhomogeneous Helmholtz equation within local fractional derivative operator, Mathematical Problems in Engineering, 2014 (2014) 1-7. (SCI)

  • A.M. Yang, J. Li, H. M. Srivastava, G. Xie, X.-J. Yang, The local fractional Laplace variational iteration method for solving linear partial differential equations with local fractional derivatives, Discrete Dynamics in Nature and Society, 2014 (2014) 1-8. (SCI) 

  • S. Xu, X. Ling, C. Cattani, G.-N. Xie, X.-J. Yang, and Y. Zhao, Local fractional Laplace variational iteration method for non-homogeneous heat equations arising in fractal heat flow, Mathematical Problems in Engineering, 2014 (2014) 1-7. (SCI)

  • H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu, and X.-J. Yang, Local fractional Sumudu transform with application to IVPs on Cantor sets, Abstract and Applied Analysis, 2014 (2014) 1-7. (SCI)

  • M. Li, X. F. Hui, C. Cattani, X. J. Yang, Y. Zhao, Li M, Hui XF, Cattani C, Yang XJ, Zhao Y. Approximate solutions for local fractional linear transport equations arising in fractal porous media, Advances in Mathematical Physics, 2014 (2014) 1-8. (SCI)

  • Y. Y. Li, Y. Zhao, G. N. Xie, D. Baleanu, X.-J. Yang, K. Zhao, Local Fractional Poisson and Laplace Equations with Applications to Electrostatics in Fractal Domain, Advances in Mathematical Physics, 2014 (2014) 1-5. (SCI)

  • L. F. Wang, X.-J. Yang, D. Baleanu, C. Cattani, Y. Zhao, Fractal Dynamical Model of Vehicular Traffic Flow within the Local Fractional Conservation Laws, Abstract and Applied Analysis, 2014 (2014) 1-5. (SCI)

  • S. H. Yan, X. H. Chen, G. N. Xie, C. Cattani, X.-J. Yang, Solving Fokker-Planck Equations on Cantor Sets Using Local Fractional Decomposition Method, Abstract and Applied Analysis, 2014 (2014) 1-6. (SCI)

  • K. Liu, R.-J. Hu, C. Cattani, G.N. Xie, X-J. Yang, Y. Zhao, Local fractional Z transforms with applications to signals on Cantor sets, Abstract and Applied Analysis, 2014 (2014) 1-6. (SCI)

  • A. M Yang, Y. Z. Zhang, C. Cattani, G.N. Xie, M. M. Rashidi, Y.J. Zhou, X-J Yang, Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets, Abstract and Applied Analysis, 2014 (2014) 1-6. (SCI)

  • D. Baleanu, J. A. Tenreiro Machado, C. Cattani, M. C. Baleanu, X. -J. Yang, Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators, Abstract and Applied Analysis, 2014 (2014) 1-6. (SCI)

  • S. T. Mohyud-din, U. Khan; N. Ahmed, S. I. Khan; Z. A. Zaidi, X.-J. Yang, On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates, Alexandria Engineering Journal, 53 (2014) 463-468. (Scopus)

  • J. Ahmad, S. T. Mohyud-Din, X.-J. Yang, Local fractional decomposition method on wave equation in fractal strings, Mitteilungen Klosterneuburg, 62 (2014) 98-105.

2013

  • X.-J. Yang, H. M. Srivastava, J. -H. He, D. Baleanu, Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives, Physics Letters A, 377 (2013) 1696–1700. (ESI Highly Cited Paper) (SCI)

  • X.-J. Yang, D. Baleanu, J.-H. He, Transport equations in fractal porous media within fractional complex transform method, Proceedings of the Romanian Academy, Series A, 14 (2013) 287-292, 2013. (ESI Highly Cited Paper) (SCI)

  • X.-J. Yang, D. Baleanu, W. P. Zhong, Approximate solutions for diffusion equations on Cantor space-time, Proceedings of the Romanian Academy, Series A, 14 (2013) 127-133. (ESI Highly Cited Paper) (SCI)

  • X. -J. Yang, D. Baleanu, J. A. T. Machado, Mathematical aspects of Heisenberg uncertainty principle within local fractional Fourier analysis, Boundary Value Problems, 2013 (2013) 1-6. (ESI Highly Cited Papers) (SCI)

  •  X.-J. Yang, D. Baleanu, Fractal heat conduction problem solved by local fractional variation iteration method, Thermal Science, 17 (2013) 625-628. (ESI Highly Cited Papers) (SCI)

  • W. H. Su, D. Baleanu, X. -J. Yang, and H. Jafari, Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method, Fixed Point Theory and Applications, 2013 (2013) 89-102. (ESI Highly Cited Papers) (SCI)

  • W. H. Su, D. Baleanu, X. -J. Yang, and H. Jafari, Fractional complex transform method for wave equations on Cantor sets within local fractional differential operator, Advances in Difference Equations, 2013 (2013) 97-103. (SCI)  

  • A.-M. Yang, C. Cattani, H. Jafari, and X.-J. Yang, Analytical solutions of the one-dimensional heat equations arising in fractal transient conduction with local fractional derivative, Abstract and Applied Analysis, 2013 (2013) 1-5. (SCI)

  • A. M. Yang, Z. S. Chen, H. M. Srivastava, X. -J. Yang, Application of the local fractional series expansion method and the variational iteration method to the Helmholtz equation involving local fractional derivative operators, Abstract and Applied Analysis, (2013) 1-6. (SCI)

  • Y. Zhao, D. Baleanu, C. Cattani, D. F. Cheng, X. -J Yang, Maxwell’s equations on Cantor sets: a local fractional approach, Advances in High Energy Physics, 2013 (2013) 1-6. (SCI)

  • Y. Zhao, D. Baleanu, C. Cattani, D. F. Cheng, and X.-J. Yang, Local fractional discrete wavelet transform for solving signals on Cantor sets, Mathematical Problems in Engineering, 2013 (2013) 1-8. (SCI)   

  • X.-J. Yang, D. Baleanu, H. M. Srivastava, and J. A. Tenreiro Machado, On local fractional continuous wavelet transform, Abstract and Applied Analysis, 2013 (2013) 1-5. (SCI)

  • Y. Zhao, D. F. Cheng, X. -J. Yang, Approximation solutions for local fractional Schrödinger equation in the one-dimensional Cantorian system, Advances in Mathematical Physics, 2013 (2013) 1-5. (SCI)

  • Y. Zhao, D. Baleanu, M. C. Baleanu, D. F. Cheng, X.-J. Yang, Mappings for special functions on Cantor sets and special integral transforms via local fractional operators, Abstract and Applied Analysis, 2013 (2013) 1-8. (SCI)

  • Y. Z. Zhang, A. M. Yang, X. -J. Yang, 1-D heat conduction in a fractal medium: A solution by the local fractional Fourier series method, Thermal Science, 17 (2013) 953-956. (SCI) 

  • Y.-J. Hao, H.M. Srivastava, H. Jafari, X. -J.Yang, Helmholtz and Diffusion Equations Associated with Local Fractional Derivative Operators Involving the Cantorian and Cantor-Type Cylindrical Coordinates, Advances in Mathematical Physics, 2013 (2013) 1-5. (SCI)

  • X.-J. Ma, H. M. Srivastava, D. Baleanu, X.-J. Yang, A new Neumann series method for solving a family of local fractional Fredholm and Volterra integral equations, Mathematical Problems in Engineering, 2013 (2013) 1-6. (SCI)

  • Y.-J. Yang, D. Baleanu, and X. -J. Yang, Analysis of fractal wave equations by local fractional Fourier series method, Advances in Mathematical Physics, 2013 (2013) 1-6. (SCI) 

  • X.-J. Yang, D. Baleanu, and J. A. Tenreiro Machado, Systems of Navier-Stokes equations on Cantor sets, Mathematical Problems in Engineering, 2013 (2013) 1-8. (SCI)

  • A. M. Yang, X. -J. Yang, Z. B. Li, Local fractional series expansion method for solving wave and diffusion equations on Cantor sets, Abstract and Applied Analysis, 2013 (2013) 1-5. (SCI)

  • Y. J. Yang, D. Baleanu, X. -J. Yang, A local fractional variational iteration method for Laplace equation within local fractional operators, Abstract and Applied Analysis, 2013 (2013) 1-6. (SCI)

  • M. S. Hu, D. Baleanu, X. -J. Yang, One-phase problems for discontinuous heat transfer in fractal media, Mathematical Problems in Engineering, 2013 (2013) 1-3. (SCI)

  • W. P. Zhong, X.-J. Yang, F. Gao, A Cauchy problem for some local fractional abstract differential equation with fractal conditions, Journal of Applied Functional Analysis, 8 (2013) 92-99.

  • X.-J. Yang, D. Baleanu, Local fractional variational iteration method for Fokker-Planck equation on a Cantor set, Acta Universitaria, 23 (2013) 9-14.

  • X.-J. Yang, J.-H. He, D. Baleanu, Local fractional calculus and fractional complex transform, Nonlinear Science Letters A, 4 (2013) 70-75.

  • D. Baleanu, X. -J. Yang, Euler-Lagrange equations on Cantor sets,Proceedings of the ASME,August 4-7, 2013, Portland, Oregon, Oregon, USA,2013. (SCI)

  • D. Baleanu, X. -J. Yang, Local fractional Fourier series with applications to representations of fractal signals, Proceedings of the ASME,August 4-7, 2013, Portland, Oregon, Oregon, USA,2013. (SCI)

2012

  • M.-S. Hu, R. P. Agarwal, X.-J. Yang, Local fractional Fourier series with application to wave equation in fractal vibrating string, Abstract and Applied Analysis, 2012 (2012) 1-15. (SCI)

  • X. -J. Yang, M.- K. Liao, J. -W. Chen, A novel approach to processing fractal signals using the Yang-Fourier transforms, Procedia Engineering, 29 (2012) 2950-2954.

  • X.-J. Yang, Local fractional calculus and its applications, In: Proc. of FDA'12, The 5th IFAC Workshop Fractional Differentiation and its Applications, pp.1-8, 2012.

  • S. T. Mohyud-Din, U. Khan, N. Ahmed, Z. A. Zaidi, S.I. U. Khan, X.-J. Yang, Heat transfer analysis in diverging and converging channels, Nonlinear Science Letters A, 3 (2012) 61-79.

  • X.-J. Yang, Local fractional partial differential equations with fractal boundary problems,Advances in Computational Mathematics and its Applications,1 (2012) 60-63.

  • X.-J. Yang, Expression of generalized Newton iteration method via generalized local fractional Taylor series, Advances in Computer Science and its Applications, 1 (2012) 89-92.

  • X.-J. Yang, Local fractional Fourier analysis, Advances in Mechanical Engineering and its Applications, 1 (2012) 12-16.

  • X.-J. Yang, Generalized sampling theorem for fractal signals, Advances in Digital Multimedia, 1 (2012) 88-92.

  • X.-J. Yang, Local fractional kernel transform in fractal space and its applications, Advances in Computational Mathematics and its Applications, 1 (2012) 86-93.

  • X.-J. Yang, Local fractional integral equations and their applications, Advances in Computer Science and its Applications, 1 (2012) 234-239.

  • X.-J. Yang, F. R. Zhang, Local fractional variational iteration method and its algorithms,Advances in Computational Mathematics and its Applications, 1 (2012) 139-145.

  • X.-J. Yang, Y. Zhang, A new successive approximation to non-homogeneous local fractional Volterra equation, Advances in Information Technology and Management,1 (2012) 138-141.

  • X.-J. Yang, Picard’s Approximation method for solving a class of local fractional Volterra integral equations, Advances in Intelligent Transportation Systems, 1 (2012) 67-70.

  • X.-J. Yang, Heat transfer in discontinuous media, Advances in Mechanical Engineering and its Applications, 1 (2012) 47-53.

  • X.-J. Yang, Generalized local fractional Taylor’s formula with local fractional derivative, Journal of Expert Systems, 1 (2012) 26-30.

  • X.-J. Yang, Y. Zhang, A new Adomian decomposition procedure scheme for solving local fractional Volterra integral equation, Advances in Information Technology and Management, 1 (2012) 158-161.

  • X.-J. Yang, The zero-mass renormalization group differential equations and limit cycles in non-smooth initial value problems, Prespacetime Journal, 3 (2012) 913-923.

  • X.-J. Yang, Theory and applications of local fractional Fourier analysis, Advances in Mechanical Engineering and its Applications, 1 (2012) 70-85, 2012.

2011

  • X.-J. Yang, F. Gao, Fundamentals of Local Fractional Iteration of the Continuously Nondifferentiable Functions Derived from Local Fractional Calculus, Communications in Computer and Information Science, 153 (2011) 398-404.

  • X.-J. Yang, Local Fractional Laplace’s Transform Based Local Fractional Calculus, Communications in Computer and Information Science, 153 (2011) 391-397.

  • X.-J. Yang, Local fractional integral transforms, Progress in Nonlinear Science, 4 (2011) 1-225.

2010

  • X. -J. Yang, Z. X. Kang, C. H. Liu, Local fractional Fourier’s transform based on the local fractional calculus, In: Proc. of the 2010 International Conference on Electrical and Control Engineering, IEEE Computer Society Washington, Wuhan, China, pp.1242-1245, 2010.

2009

  • X.-J. Yang, F. Gao, The fundamentals of local fractional derivative of the one-variable non-differentiable functions, World SCI-TECH R&D,  31 (2009)  920-921.

  • X.-J. Yang, L. Li, R. Yang, Problems of local fractional definite integral of the one-variable non-differentiable function, World SCI-TECH R&D, 31 (2009) 722-724.

  • F. Gao, X.-L. Xu, X.-J. Yang, Y. Ju, Research on thermo-visco-elastoplastic model of rock, Chinese Journal of Rock Mechanics and Engineering, 28 (2009) 74-80.

2008

  • X.-J. Yang, F. Gao, W.-P Zhong, C.-C, Xu, Fractional definite Integral, World SCI-TECH R&D, 30 (2008) 636-638.

  • X.-J. Yang, G.-N. Liu, Z.-X. Kuang, N.-Y. Gao, X.-L, Xu, The adaptability principle of mechanical law and the scale-invariant principle of mechanical law in fractal space, World SCI-TECH R&D, 30 (2008) 800-802.

2007

  • C.-J. Jin, W.-Q. Liu, X.-J. Yang, Application of ANSYS in seismic response analysis of constructing of high buildings, Journal of Heilongjiang Institute of Science&Technology,17 (2007) 54-58.

Linkes

 

Prof. H. M. Srivastava Homepage

Prof.  J. A. Tenreiro Machado Hompage

Prof. Juan J. Nieto Homepage

Prof. Vasily E. Tarasov Homepage 

Prof. Y. S. Gasimov Homepage

Prof. D. Baleanu Homepage

 

CONTACT ME

Your details were sent successfully!

bottom of page